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A B S T R A C T

This study proposes a novel Grid Search-Particle Swarm Optimization-Strong Tracking Interacting Multiple 
Model (GS-PSO-ST-IMM) algorithm to address the challenges of tracking vehicles with nonlinear trajectories 
using distributed magnetic sensor networks. Traditional methods suffer from limited accuracy due to insufficient 
magnetic moment resolution and motion model mismatch. The key contributions include: (1) integrating 
geomagnetic background field priors into a hierarchical localization model, refining vehicle position and mag
netic moment estimation through grid search and PSO optimization; (2) enhancing tracking robustness by 
dynamically fusing multiple motion models by Interacting Multiple Model filtering and adjusting filter gains 
using strong tracking principles to mitigate model mismatch. Simulations demonstrate a 38.7 % reduction in 
velocity error compared to the Kalman filter, with average localization errors of 0.99 m. Field experiments 
validate real-time performance, achieving 6.3 % and 8.43 % error ratios under regular and irregular sensor 
layouts, outperforming centroid and Total Field Matching methods. The framework significantly improves ac
curacy for complex maneuvers (e.g., sharp steering) while maintaining computational efficiency, offering 
practical value for security and traffic monitoring applications.

1. Introduction

With the development of Internet of Things (IoT) technology, it has 
been creating various sensing and monitoring networks based on lots of 
distributed sensors [1,2]. Particularly, such technique is showing great 
advantage for the applications of the port security and border moni
toring, which require a large volume of sensors [3,4]. As one of 
important passive detection technologies, magnetic anomaly detection 
(MAD) has been applied for unexploded ordnance detection, target 
location, and other areas due to its cross-media detection capability and 
strong environmental adaptability [5–7]. Previous studies have shown 
that continuous monitoring of targets, such as ship and vehicle, can be 
effectively realized by deploying magnetic sensor networks in shallow 
seabed or open areas, which show great value of enhancing port security 
and homeland security [8–11].

In fact, IoT technology offers the military an opportunity to monitor 
vehicle within a specific area through battlefield coverage by thousands 

of compact magnetic sensors [12]. These remote monitoring sensors can 
form an unattended ground sensor network to generate magnetic 
anomaly signals induced by intruding targets, meanwhile, the array 
configuration is helpful to reduce the false alarm rate. Similarly, in 
shallow sea monitoring, hundreds of underwater magnetic or acoustic 
sensors can be deployed to monitor vessels in areas of interest [13,14]. 
Therefore, it has been drawn lots of interests in the study of a target 
localization and monitoring by using magnetic sensors [15,16].

Regarding to the issue of vehicle localization by the magnetic sen
sors, the problem can be described by a nine-dimensional parametric 
nonlinear optimization problem, which contains the vectors of position, 
magnetic moment and velocity [17–19]. Generally, current in
vestigations can be divided into two technical routines: one of them is to 
localize the target based on magnetic vector information. Unfortunately, 
this type of method is affected greatly by the attitude of vector sensors, 
as well as errors in the axial direction and observation direction of 
magnetic sensors. To address these adverse factors, the single-point 
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gradient methods and tensor methods have been proposed [20–22]. 
However, these improvements cannot eliminate the errors induced by 
the intrinsic axial alignment and observation directions of magnetic 
sensors. Consequently, it imposes extremely high requirements on the 
layout of sensors. Therefore, vector information-based methods are not 
suitable for rapidly deployed distributed sensor networks. On the other 
hand, another important localization strategy is based on magnetic 
scalar information. In this case, some coefficient fitting approaches, such 
as the gradient descent and the inverse function methods, have been 
proposed [23–25]. Nevertheless, the gradient descent method requires 
reasonable initial solutions and regularly distributed arrays, otherwise, 
this algorithm is non-convergence. Meanwhile, the performance of the 
inverse function method is highly dependent on the fitting model, such 
as the continuity of the objective function, which makes it not reliable. 
To solve these problems, advanced algorithms like simulated annealing, 
ant colony and particle swarm optimization have been developed 
[26–28]. These algorithms are designed to predict the target position by 
fitting the observed values of magnetic anomaly signals with calculated 
ones. However, the simulated annealing algorithm requires extensive 
experiments to select iteration parameters and initial parameters. 
Although the ant colony algorithm exhibits good performance in local 
optimization, it is usually intended to be stuck as the parameter space is 
complicated. Thus, it requires large computational loading and a high 
number of iterations, which brings in a huge challenge for real-time 
performance. Meanwhile particle swarm optimization algorithm has 
been proved to have high accuracy and strong global optimization 
ability in the field of target location [29,30]. However, there are obvious 
defects in the response speed and multiplicity in the face of high- 
dimensional optimization. Furthermore, these algorithms are dealing 
with the issue of single-point localization. When the target undergoes 
nonlinear motion, the positioning results between adjacent sensor nodes 
conflict with each other, leading to a poor target tracking capability. To 
overcome the limitations of single-point localization, some scholars 
have adopted array-based approaches, such as the centroid algorithm 
and the total field matching (TFM) algorithm [31–33]. Most of these 
methods combine magnetic anomaly signals with geometric weighting 
methods based on array configurations and estimate motion parameters 
through spatiotemporal differences in multi-sensor signals. In order to 
reduce the complexity of computation, these methods normally neglect 
the dynamic changes of the target's magnetic moment, which limit the 
prediction accuracy. To address these shortcomings, alternative 
methods such as least squares and Bayesian filtering have been intro
duced [34–37]. However, such methods exhibit significant limitations as 
tracking vehicles with nonlinear motion, such as sharp deceleration, 
accelerations and lane changes. This unacceptable performance is 
mainly caused by two unresolved challenges in this research area:

1) Insufficient resolution of magnetic moment parameters. It has 
been demonstrated that the absence of directional information in the 
scalar information results in the direct solution encountering multidi
mensional nonlinear optimization. The conventional algorithms usually 
take the magnetic moment model as a constant value to reduce the 
complexity of the solution. However, it should be noted that the posi
tioning accuracy is limited, particularly in the case of localizing the 
vehicle with nonlinear motion. In this case, the variation of the target’s 
magnetic moment cannot be consistent.

2) Mismatch of the motion models. In order to obtain the parameter 
of vehicle velocity, an assumption regarding its motion model must be 
made. Most studies assume that vehicles follow a straight line or make 
prior decisions based on the direction of the road [38–40]. However, the 
targets typically exhibit intricate motion patterns, such as lane changing 
or steering. Consequently, the mismatch between the model assump
tions and the actual motions causes the relatively big error as estimating 
the velocity of target, which directly affects the localization accuracy as 
well.

Therefore, in order to promote the application of large-scale multi- 
target monitoring and localization, it is highly desired to derive an 

advanced algorithm with the great capability of real-time localizing and 
tracking nonlinearly moving vehicle. In this paper, we propose a Grid 
Search-Particle Swarm Optimization-Strong Tracking Multi-Model 
filtering (GS-PSO-ST-IMM) localization and tracking algorithm frame
work, which is demonstrated to have good performance in this case. The 
contributions are mainly in the following two aspects: firstly, we 
introduce the geomagnetic background field into the localization model, 
which can improve the localization accuracy by considering the effect of 
background field. Secondly, we track the vehicle by an interactive multi- 
model filtering tracking framework based on the strong tracking (ST- 
IMM) filtering. With the help of fusing different motion models, the 
degradation of localization accuracy caused by the model mismatch can 
be reduced. More importantly, both simulation and experimental results 
have shown that our proposed algorithm exhibits higher localization 
accuracy for nonlinear moving vehicle compared to previous works. 
Such excellent performance holds it promising for potential applications 
of developing real-time monitoring system for homeland security, un
authorized vehicle tracking in restricted areas critical and so on.

2. Localization algorithm

The signal processing flowchart of the proposed GS-PSO-ST-IMM 
localization algorithm is shown in Fig. 1:

Step 1: Identify the abnormal area. According to the amplitudes of 
magnetic signals captured by the sensors, the area where the target 
located can be is quickly determined. This area is defined as an abnormal 
region.

Step 2: (1) Initial localization. The abnormal area obtained from 
previous step is divided into multiple anchor points, and then an initial 
solution for the target position and magnitude of magnetic moment can 
be achieved by searching the one with the smallest error value among 
the anchor points based the simplified grid search method. Unlike pre
vious works [32–34], it only obtains a rough range for the target position 
and magnetic moment magnitude in this process. (2) Precise localiza
tion. Based on initial solution, the local geomagnetic field is introduced 
as reference information. Subsequently, a particle swarm optimization 
algorithm is employed to determine the target position and the magnetic 
moment precisely. Thus, much more accurate solution can be solved 
through this new Grid Search-Particle Swarm Optimization (GS- PSO) 
algorithm.

Step 3: Tracking. In order to predict the nonlinear trajectory of a 
target, an interactive multi-model filtering tracking framework based on 
the strong tracking (ST-IMM) concept is proposed. To overcome the 
limitation of previous work [32], this new method integrates the Kalman 
filtering with multi-modal filtering and the strong tracking. Benefitting 
from the dynamic fusion of multiple linear models and adjustment of 
filter gain, such advanced algorithm is able to track nonlinear targets 
with sudden changes in motion state. So that, the localization results 
obtained from Step 2 are used as input to derive the target trajectory 
through this approach.

2.1. Identify anomaly region

Fig. 2(a) shows the detection layout of a ferromagnetic target moving 
in a sensor network consisting of multiple groups of sensor nodes. The 
whole area is divided into different monitoring regions by sensors with 
different relative positions. We assume that both the target and the 
sensors are in the same plane, so the position of all the sensors can be 
uniquely represented by the coordinate system as Pi

(
xi, yi, zi

)
, and the 

position of the target can be denoted as Pm
(
xm,ym, zm

)
.

As a vehicle intrudes into the area covered by the sensor network, it 
can be a magnetic dipole when the vehicle is far away from the sensor 
nodes. Therefore, the magnetic anomaly signal B induce by vehicle can 
be expressed as: 

C. Yang et al.                                                                                                                                                                                                                                    Measurement 264 (2026) 120265 

2 



B =
μ0

4π

[
3(m • r)r

|r|5
−

m
|r|3

]

(1) 

where μ0 is the vacuum permeability, which is equal to 4π × 10− 7H/m. r 
denotes the relative position vector of the sensor and the magnetic 
dipole, and m denotes the magnetic moment of the vehicle.

According to the configuration of a magnetic dipole model shown in 
Fig. 2(b), the Eq. (1) can be rewritten as: 

|B| =
1
|r|3

μ0|m|

4π |3r0cosθ − m0| (2) 

where m0 denotes a unit vector of the magnetic moment of the magnetic 
dipole, r0 denotes a unit vector of the relative position of the sensor and 
the magnetic dipole, and θ denotes the angle between m and r.

Thus, the total field signal induced by the magnetic dipole can be 
expressed as: 

|B| =
μ0|m|

4π
1
|r|3

ρ (3) 

where ρ = |3r0cosθ − m0|.
The value of ρ depends on the relative position between the vehicle 

and the sensor and the direction of the magnetic moment. That is, it is 
determined by the position of the vehicle and the direction of the 
magnetic moment, but it cannot be obtained through priori knowledge. 
However, according to θ satisfies 0◦

≤ θ < 360◦ , it is derived that ρ can 
be determined to be from 1 to 2.

According to Eq. (3), the magnitude of the signal received by sensors 
is mainly determined by the distance between the magnetic dipole and 
sensors. Therefore, the position of the dipole is locked in the region 
enclosed by these N sensors that receive the maximum signal magnitude. 
Therefore, the position of the magnetic dipole satisfies xm ∈ [min(xi),
max(xi)], ym ∈

[
min

(
yi
)
, max

(
yi
)]

, where xi, yi denote the relative co
ordinates of the i-th node in the sensor network.

2.2. Localization

The localization issue for a magnetic target can be described as a six- 
variable optimization problem involving the target position and mag
netic moment. According to previous results [41,42] the magnetic 
moment direction is significant changed as the target undergoes 
nonlinear motion. Therefore, a real-time calculation of magnetic 
moment is critical for positioning nonlinear moving target. To avoid 
falling into local optimal solution and excessive computation time when 
directly solving for target location and magnetic moment, we firstly 
approximate the target position and magnetic moment magnitude by 
ignoring the magnetic moment direction [32–34,43]. Subsequently, 
based on this approximate solution, we redefine the search space and 
incorporate magnetic moment direction information to perform precise 
calculations. The directional information of the magnetic moment was 
determined through stepwise positioning. This approach can achieve 
higher positioning accuracy in nonlinear motion localization.

2.2.1. Initial localization
Based on Eq. (3), the magnitude of the magnetic moment of the 

magnetic dipole can be expressed as: 

|m| = 4π |B||r|3

ρμ0
(4) 

According to Eq. (4), the amplitude of the magnetic moment for the 
target is unique. Therefore, instead of calculating the target position by 
using Eq. (3), the error function (Eq. (5)) is established to describe the 
mismatch between the true magnetic moment value of the magnetic 
dipole and the estimated value by using our proposed algorithm. So, the 
problem of localization is transformed into finding the minimum value 
of the error function. 

e(Δm) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(

|mi| −
1
N
∑N

i=1
|mi|

)2
√
√
√
√ (5) 

where |mi| denotes the amplitude of the vehicle magnetic moment ob
tained by the magnetic signal from the i-th sensor among the N sensors in 
this anomaly region.

In detail, according to the definition of error function, it can be 
noticed that the smaller the value of the error function, the closer esti
mated position to the real vehicle position. Therefore, the grid co
ordinates corresponding to the value of min(e(Δm)) is regarded as the 
primary location of the vehicle. It should be noted that the ρ value in
volves multi-dimensional parameter coupling. It mainly includes the 
relative positions of the sensor and the vehicle, the geomagnetic field 
environment characteristics, the 3D configuration of the vehicle and the 
platform attitude angle, and other influencing factors. If solved directly 
it will face high-dimensional nonlinear optimisation. Most of the pre
vious research simplify the positioning model by simplifying the influ
ence of ρ according to the small range variation of ρ ∈ [1,2]. such as the 
centre point positioning algorithm, the Total Field Matching (TFM) 

Fig. 1. Signal processing of proposed target localization and tracking method.

Fig. 2. (a) Target localization by random layout of sensors; and (b) Model di
agram of magnetic anomaly detection.
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algorithm [32,33,44]. In order to avoid high-dimensional nonlinear 
optimisation, we take ρ = 1.4 to simplify the model to obtain the vehicle 
position and magnetic moment initial solutions according to previous 
results. However, one should be noted that this process only obtains an 
initial solution for the target position and magnetic moment, rather than 
directly deriving the localization of target.

As shown in Fig. 3(a), for the characteristics of the magnetic anomaly 
region, we adopt a grid deployment strategy to construct an array of 
anchor points. By constructing the error evaluation function based on 
Eq. (5), the magnetic moment matching degree is calculated for each 
anchor point, and the spatial coordinates corresponding to the minimum 
error value are finally selected as the initial localization solution of the 
target vehicle, and the magnetic moment inversion is completed 
simultaneously. It should be particularly pointed out that the mathe
matical properties of Eqs. (4)-(5) indicate that this error function pre
sents significant spatial heterogeneity characteristics in the solution 
space. In order to optimize the allocation of computational resources, 
this scheme designs a multilevel grid refinement strategy: as shown in 
Fig. 3(b), by constructing a progressive anchor distribution architecture 
from sparse to dense, and adopting an iterative mechanism of step-by- 
step convergence, we can effectively reduce the load of a single opera
tion while guaranteeing the positioning accuracy, so as to achieve a 
dynamic balance between computational efficiency and positioning 
accuracy.

2.2.2. Precise localization
In the rough localization phase, we can obtain initial estimates of the 

vehicle position and magnetic moment strength 
(

xprimary, yprimary,
⃒
⃒mprimary

⃒
⃒
)

. However, due to the parameter simplifica

tion strategy, the process inevitably introduces systematic errors. In 
order to accurately solve the magnetic moment direction, we introduce a 
system of direction parameters based on the initial solution: let α be the 
angle between the magnetic moment vector and the vertical direction 
(0◦

< α < 180◦ ), and β be the angle between the horizontal projection of 
the magnetic moment and the due-east direction (0◦

< β < 360◦ ), and 
thus construct a complete representation of the magnetic moment 
vector: 

BiEast =
μ0

4πr3

[
3(xPSO − 1)mEast + 3xPSOyPSOmNorth + 3xPSOzPSOmVertical

]
(6) 

BiNorth =
μ0

4πr3

[
3xPSOyPSOmEast + 3

(
yPSO − 1

)
mNorth + 3yPSOzPSOmVertical

]

(7) 

BiVertical =
μ0

4πr3

[
3xPSOzPSOmEast + 3yPSOzPSOmNorth + 3(zPSO − 1)mVertical

]

(8) 

where 
(
xPSO, yPSO, |mPSO|

)
denotes the PSO algorithm particle con

structed based on the results obtained from the coarse localization. 
mEast ,mNorth,mVertical denotes the component of the magnetic moment in 
the east, north and vertical directions which can be obtained from the 
orthogonal decomposition of |mPSO|, α and β. BiEast,BiNorth,BiVertical repre
sents magnetic field generated by the vehicle in the east direction, the 
north direction and the vertical direction.

According to working principle, the magnetic sensor measures the 
projected component of the magnetic field along the geomagnetic 
background direction. Thus, the magnetic field signals received by 
different sensors inside the anomaly region are not only various in in
tensity, but also in their projection directions relative to the geomag
netic field. Considering that the geomagnetic background strength Bg 
and its direction parameters (magnetic inclination φ, magnetic decli
nation γ) can be accurately obtained by a regional geomagnetic model, 
they are taken as a priori constraints in this study. The strength and 
direction characteristics of the observed signals are jointly determined 
by three sets of parameters: 1) the position coordinates 

(
xm, ym

)
and the 

magnetic moment modulus m of the target vehicle. 2) the magnetic 
moment direction parameters (α, β). 3) the geomagnetic field back
ground direction (φ, γ).

Parameter 1) can be coarsely located to obtain an estimate as an 
initial solution, and parameter 3) can be directly called from the 
Geographic Information System database. So, we implement the global 
spatial search for parameter 2, while the neighbourhood local adjust
ment for parameter 1. In order to achieve multi-parameter collaborative 
optimisation, PSO algorithm is used to solve the problem:

As the magnetic moment and the position of the target is determined, 

Fig. 3. (a) Schematic diagram of anchor division (b) Schematic diagram of distribution anchor division.
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the magnetic anomaly signal received by the i-th sensor can be found to 
be Bi according to Eq. (2), and the signal B received by the sensor can be 
described as: 

Bi =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
BgEast + BiEast

)2
+
(
BgNorth + BiNorth

)2
+
(
BgVertical + BiVertical

)2
√

(9) 

where BgEast,BgNorth,BgVertical denotes the strength of the geomagnetic 
background in the due east, due north and vertical directions. These can 
be calculated from magnetic declination and inclination angles.

Based on Eq. (9) it is possible to determine an error function as an 
adaptation function for the PSO algorithm: 

em =
∑N

i=1

( ⃒
⃒Bpos

⃒
⃒ − |Bi|

)2 (10) 

where |Bi| is the actual observed value of i-th sensor. 
⃒
⃒Bpos

⃒
⃒ denotes the 

observation of i-th sensor inverted from the parameters of the current 
particle by Eq. (1).

In terms of parameter optimization configurations, the spatial 
boundary conditions of the parameters in the PSO algorithm involving 
the vehicle position coordinates 

(
xPSO, yPSO

)
and the magnetic moment 

modulus mPSO will be systematically elaborated in the localization 
simulation in Chapter 3.

By using our proposed 2-steps GS-PSO localization strategy, the 
positioning accuracy of nonlinearly moving vehicles can be enhanced 
greatly. Specifically, with the help of introducing the geomagnetic 
background field into the positioning algorithm, the issue such as falling 
into local optimal solution caused by a direct six degree-of-freedom 
nonlinear optimization can be avoided effectively.

2.3. Tracking

To address the inversion problem of vehicle kinematic parameters 
(
vx, vy, vz

)
, we recursively estimate the target localization points ob

tained from the localization algorithms through the filtering system 
based on the dynamic system equations and the magnetic dipole 
observation model. An in-depth analysis reveals that the traditional 
Kalman filter (KF) and its extended form (EKF) can achieve motion state 
tracking through a linear approach though. However, due to the 
inherent defects of a single motion model, the tracking accuracy will be 
degraded due to model mismatch when the vehicle has nonlinear motion 
patterns such as sharp steering. To address this problem, we achieve 
adaptive fusion of motion models through the IMM architecture by 

adopting a multi-model fusion mechanism in time-varying motion 
modes. We also introduce the strong tracking idea and obtained the ST- 
IMM, which improves the sensitivity of the filtering algorithm to sudden 
changes in the motion state by dynamically adjusting the filtering gain 
in the filtering algorithm.

As shown in Fig. 4, the ST-IMM filter is based on the IMM filter, 
where a fading factor λ is introduced for each model in IMM filter, and 
the filtered model gain is increased by the fading factor when the model 
does not satisfy orthogonality in order to improve model tracking. For 
example, as the target undergoes a sudden change in motion state, the 
filtering gain would be rapidly increased through the factor of λ, which 
can enhance the tracking accuracy. The filtering process can be repre
sented as the following steps:

(i) Initialization
Considering there are a total of r motion models with two observa

tion time intervals of ΔT under different models j, the motion state of the 
vehicle under kΔT moments can be expressed as sj(k): 

sj(k) =
[
xm(k) vx(k) ym(k) vy(k) ax(k) ay(k)

]T (11) 

where [ xm(k) ym(k) ], 
[
vx(k) vy(k)

]
, 
[
ax(k) ay(k)

]
denotes the po

sition, velocity and acceleration information of the vehicle at moment 
kΔT, respectively. Therefore, the measurement equation at moment kΔT 
can be expressed as: 

Zj(k) = Hjsj(k)+Nj(k) (12) 

where Nj(k) denotes the total noise caused by the sensor intrinsic noise 
and environmental noise; H denotes the corresponding state transfer 
matrix of the vehicle at the moment kΔT, which represents the rela
tionship between the measured position and the true position. H can be 
expressed as: 

H =

[
1 0 0 0 0 0
0 0 1 0 0 0

]

(13) 

The corresponding equations of state for different motion models can 
be expressed as: 

sj(k/k − 1) = Ajsj(k − 1)+Wj(k) (14) 

where Wj(k) denotes the process noise; Aj denotes the prediction matrix 
under different model j, and different motion models correspond to 
different prediction matrices. For example, the prediction matrices of 
constant velocity (CV) model, constant turning (CT) model and constant 

Fig. 4. ST-IMM Flowchart.
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acceleration (CA) model can be expressed as: 

ACV =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Δt 0 0 0 0
0 1 0 0 0 0
0 0 1 Δt 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15) 

ACT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 sin(ωΔt)/ω 0 − (1 − cos(ωΔt))/ω 0 0
0 cos(ωΔt) 0 − sin(ωΔt) 0 0
0 (1 − cos(ωΔt))/ω 1 sin(ωΔt)/ω 0 0
0 sin(ωΔt) 0 cos(ωΔt) 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16) 

ACA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 Δt 0 0 Δt2/2 0
0 1 0 0 Δt 0
0 0 1 Δt 0 Δt2/2
0 0 0 1 0 Δt
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(17) 

These three models can describe the most common status of vehicle 
motion. The prediction model can avoid the tracking inaccuracy caused 
by model mismatch effectively as the fusion of three models expressed 
by Eqs. (15)-(17). The transfer between the models is determined by a 
Markovian probability transfer matrix: 

P =

⎡

⎣
p11 ... p1r
... ... ...

pr1 ... prr

⎤

⎦ (18) 

where pij denotes the probability of the vehicle transferred from the i-th 
motion model to the j-th motion model. In this paper P takes the value: 

P =

⎡

⎣
0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95

⎤

⎦ (19) 

(ii) Input Interaction
The mixed estimate ̂soj(k − 1/k − 1) and covariance Poj(k − 1/k − 1)

are obtained from the state estimate ŝj(k − 1/k − 1) at the vehicle 
(k − 1)ΔT moment and the model probability uj(k − 1) for each filter, 
treating the mixed estimate as the initial state of the current loop. The 
expression is given below: 

cj =
∑r

i=1
pijui(k − 1) (20) 

uij(k − 1/k − 1) =
1
cj

∑r

i=1
pijui(k − 1) (21) 

ŝoj(k − 1/k − 1) =
∑r

i=1
X̂i(k − 1/k − 1)uij(k − 1/k − 1) (22) 

Poj(k − 1/k − 1) =
∑r

i=1

uij(k − 1/k − 1){Pi(k − 1/k − 1)+[
ŝi(k − 1/k − 1) − ŝoj(k − 1/k − 1)

]
•

[
ŝi(k − 1/k − 1) − ŝoj(k − 1/k − 1)

]T
}

(23) 

where cj denotes the predicted probability of model j, uij(k − 1/k − 1)
denotes the mixing probability from model i to j. In order to improve the 
robustness of the algorithm, we give higher probabilities to the more 
general models at the initial stage, with initial probabilities of 0.7, 0.15, 
and 0.15 for the CV, CT, and CA models, respectively.

(iii) Strong Tracking KF (model j)
As mentioned above, a strong tracking refers to a strategy that 

directly modulates filtering gain through additional factors.
KF uses a posteriori state estimate ŝoj(k − 1/k − 1), the filter 

covariance Poj(k − 1/k − 1), and the measurement location Z(k) at 
moment k-1 as the inputs for filtering to update the prediction of the 
state ŝj(k/k) and the filter covariance Pj(k/k) at the moment k. The 
expression is given below: 

ŝj(k/k − 1) = Aj ŝoj(k − 1/k − 1) (24) 

Pj(k/k − 1) = AjPoj(k − 1/k − 1)AT
j +Qj (25) 

Kj(k) = Pj(k/k − 1)H
(
HPj(k/k − 1)HT + R

)− 1 (26) 

ŝj(k/k) = ŝj(k/k − 1)+Kj(k)
(
Z(k) − Hsj(k/k − 1)

)
(27) 

Pj(k/k) =
(
I − Kj(k)H

)
Pj(k/k − 1) (28) 

where Kj(k) denotes the gain of the filter.
The strong tracking Kalman is based on (27) and satisfies the 

orthogonal principle: 

E
[(

sj(k) − ŝj(k)
)(

sj(k) − ŝj(k)
)T]

= min (29) 

E
[(

Zj(k + i) − Hj ŝj(k + i/k + i − 1)
)(

Zj(k) − Hj ŝj(k/k − 1)
)T]

= 0 , i

= 1,2..
(30) 

In fact, the filtering and tracking process is essential to minimize the 
state residual. When both of the above indicators described by Eqs. (29) 
and (30) are satisfied, the output residual of the filter becomes an un
correlated Gaussian white noise sequence. At this condition, the hybrid 
motion model of the filter matches the real motion model, resulting an 
optimal tracking performance. Also, introduce the decay factor λj(k) and 
rewrite (25) as: 

Pj(k/k − 1) = λj(k − 1)AjPoj(k − 1/k − 1)AT
j +Qj (31) 

where λj(k) = diag ∗
(
λ1j(k), λnj(k)..., λnj(k)

)
, λij(k) can be expressed as: 

λij(k) =

{
λ0 , λ0 > 1

1 , λ0 ≤ 1
i = 1,2..., n (32) 

λ0 =
tr
[
V0(k + 1) − bR(k + 1) − HQjHT

]

tr[M(k + 1)]
(33) 

V0(k) =

⎧
⎪⎪⎨

⎪⎪⎩

(
sj(0) − ŝj(0)

)(
sj(0) − ŝj(0)

)T
, k = 1

rV0(k − 1) +
(
sj(0) − ŝj(0)

)(
sj(0) − ŝj(0)

)T

1 + r
, k > 1

0 ≤ r < 1
(34) 

where r denotes the forgetting factor, and b denotes the weakening 
factor. Considering that the actual non-linear motion state of the vehicle 
mainly includes steering, acceleration, etc., we take r = 0.95 and b = 0.3 
[45,46].

When the factor of V0(k) is increased due to an abrupt change in the 
vehicle's motion state the filter gain of Kj(k) is also increased accord
ingly. So that, the tracking ability is enhanced as performing this 
process.

(iv) Model probability update
The model probability uj(k) is updated by calculating the likelihood 

function with the following expression: 

Λj(k) =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)n⃒⃒Sj(k)
⃒
⃒

√ exp
{

−
1
2
dT

j (k)S
− 1
j (k)dj(k)

}

(35) 

uj(k) =
1

∑r
j=1Λj(k)cj

Λj(k)cj (36) 
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where Sj(k) = HPj(k/k − 1)HT + R, dj(k) = Z(k) − Hŝj(k/k − 1).
Instead, the filtering results simply combine the state estimates 

ŝ(k/k) and covariance estimates P(k/k) from the different models 
weighted by the model probabilities. 

ŝ(k/k) =
∑r

j=1
ŝj(k/k)uj(k) (37) 

P(k/k) =
∑r

j=1
uj(k)

{
Pj(k/k) +

[
ŝj(k) − X̂(k/k) •

[
ŝj(k) − X̂(k/k)

]T}]

(38) 

In summary, we localize the vehicle position and magnetic moment 
by GS-PSO and then track the vehicle by ST-IMM based on the GS-PSO 
results.

3. Simulation

To demonstrate the proposed localization algorithm, a simulation is 
performed. As shown in Fig. 5(a), 36 magnetic sensors are randomly 
distributed in an area of 10000 m2. The target motion path is divided 
into two stages: the first stage is accelerated linear motion with an initial 
velocity of 1 m/s with acceleration of 1 m/s2, and the second one is a 
constant circular motion with a radius of 30 m with an angular velocity 
of (π/60) rad/s. Furthermore, the magnetic moment of the target |m| =

1000 A⋅m2, and the orientation of the magnetic moment is set up at an 
angle of 90◦ to the Z-axis and 60◦ to the X-axis. The background mag
netic field is 53,000 nT with a magnetic inclination of − 7.3◦ and a 
magnetic declination of 53◦. A 10 % Gaussian white magnetic noise was 
used in the calculations, and the detection threshold is 10nT.

The distance between the localization points and the real position of 
the vehicle obtained by the above algorithm and ST-IMM filtering is 
used as the error. 

errorL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xm − xL)
2
+ (ym − yL)

2
+ (zm − zL)

2
√

(39) 

errorT =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xm − xT)
2
+ (ym − yT)

2
+ (zm − zT)

2
√

(40) 

where PL(xL, yL, zL) denotes the target position obtained by the locali
zation algorithm and PT(xT, yT, zT) denotes the target position obtained 
by ST-IMM filtering. The error is calculated based on the results obtained 
from localization and the results after localization filtering, respectively.

Meanwhile, the area Davg of the average distance of each sensor from 
neighbouring sensors can be obtained based on the ratio of the area 
Ssensor covered by the sensor array to the number of sensors Numsensor in 
the sensor array: 

Davg =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ssensor

Numsensor

√

(41) 

In this simulation, Davg is 16.67 m.
Therefore, to evaluate the localization error relative to the array 

scale, we define a dimensionless ratio M as the ratio of the localization 
error to Davg: 

M =
error
Davg

(42) 

where error is the localization error (in meters), and Davg is the charac
teristic length of the array. M quantifies the relative error, enabling fair 
comparison across arrays of different sizes.

According to Eq. (4), the magnetic moment magnitude of the target 
can be inverted by bringing in the localization results. Thus, again the 
accuracy of the magnetic moment prediction can be reacted by the 
parameter Dm. 

Dm=
|mest |− |m|

|m|
(43) 

where mest denotes the inverted target magnetic moment magnitude and 
m denotes the true magnetic moment magnitude.

To determine the search area in the PSO algorithm, we randomly 
distribute four sensors in a 20 × 20 m2 area targeting dipole targets of 
50–500 A⋅m2. A rough localization of this dipole target is performed 
using a grid search method in the absence of noise background. The 
simulation is repeated 50,000 times, and the error of each localization is 
counted as well as the error of the magnitude of the backpropagated 
magnetic moment. The results are shown in Fig. 6.

In the statistical results, we separately seek the results of 99 % of the 
distributions in the vicinity of 0 in 50,000 sets of simulations as the 
solution region of the PSO algorithm: 

xPSO ∈
[
xprimary − Distance × Dxy, xprimary +Distance × Dxy

]
(44) 

yPSO ∈
[
yprimary − Distance × Dxy, yprimary + Distance × Dxy

]
(45) 

|mPSO| ∈ [
⃒
⃒mprimary

⃒
⃒× (1− DmUL),

⃒
⃒mprimary

⃒
⃒× (1+DmLL)] (46) 

where Distance denotes the average neighbouring sensor spacing, Dxy =

11.7 % represents the proportion of distance error, DmUL = 22.3 % and 
DmLL = -29.8 % represent the upper and lower limits of magnetic 
moment error.

The target tracking results are shown in Fig. 6(a) the red line in
dicates the real moving path of the target, and the localization points 
obtained by GS-PSO method are marked as green squares. Moreover, the 
path obtained by traditional linear KF is indicated as blue triangles, and 
the path obtained by our proposed ST-IMM filtering is marked as yellow 
triangles. From this figure, it can be found that as the motion parameters 
of the target are changed, the tracking error based on the normal KF 
method is relatively large as expected. However, benefitting from the 
ST-IMM algorithm, the tracking error can be eliminated greatly. Thus, 
the predicated path is quite close to the real one.

Moreover, the errors of the target localization in this case are also 
analysed by calculating the mismatched values between the estimated 
positions and the real ones. As shown in Fig. 5(b), for almost all of 
moving process, the tracking errors based on KF is obviously greater 
than the values of the ST-IMM filtering. Especially for the time around 
17 s, when the motion of the target is changed from the linear acceler
ation to the circular speed, the estimated position by using KF is 
dramatically increased to over 6 m. That is unacceptable for the tracking 
in the real application. As a comparison, the ST-IMM filtering method 
shows much better performance in this situation, which can keep the 
error value around 2 m. Statistically, the average error of the localiza
tion trajectory based on the total field matching search is around 1.09 m 
with variance of 0.34, M is 5.76 %. After applying the KF, these values 
are increased to 1.65 m and 0.72, M is 8.24 %, respectively, which 
means this method brings more uncertainty. The ST-IMM filtering can 
bring these numbers down to 0.99 m with variance of 0.29, M is 5.17 %. 
These results have been also demonstrated that the ST-IMM filtering 
works much more efficiency for tracking the target with more compli
cated motion.

Fig. 5(c) shows the error comparison results of predicting the target 
motion state using KF and ST-IMM algorithms, respectively, after 
obtaining the localization coordinates based on the GS-PSO localization 
algorithm The results. The error curve analysis shows that the ST-IMM 
algorithm has a significant advantage over the traditional KF in terms 
of trajectory tracking accuracy. Especially at the critical stage when the 
target undergoes manoeuvre steering, the ST-IMM algorithm shows 
stronger adaptive ability, and its dynamic error amplitude is reduced by 
about 38.7 % compared with the KF. It is worth noting that the KF al
gorithm shows an obvious hysteresis effect when the heading changes 
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abruptly, and it needs 5–8 sampling cycles of convergence to reach a 
stable tracking state again, whereas the ST-IMM algorithm can shorten 
the convergence time to 2–3 sampling cycles through the model prob
ability self-adaptive adjustment mechanism.

4. Experiment in field

In order to demonstrate our proposed algorithm, the vehicle locali
zation experiment was performed in the real environment field. During 
the test, ten magnetic sensor nodes were placed in this area. Each of such 
nodes consist of a 3-axis Tunnelling Magnetoresistance (TMR) sensor 
(TMR9082, MultiDimension Technology Co., Ltd, China). The sensi
tivity of this sensor is 3.5 V/Oe with intrinsic magnetic noise of 250pT/ 
rtHz at 1 Hz. Moreover, a 50 Hz low-pass filter circuit is designed to filter 
out high-frequency noise. An ADC circuit converts the magnetic signal 
received by the TMR sensor into a digital signal with a sampling rate of 
20 Hz. And then, the digital signals are transmitted to the host computer 
for processing by wireless transmission module.

According to previous study [47], the upper limit frequency of the 
target magnetic anomaly signal is related to the minimum distance 
closest point of approach (CPA) between the target and the sensor, and 
the velocity of target v. It can be described by the following equation: 

f ≈ 0.85
v

CPA
(47) 

where f represents the upper limit frequency of the signal.
Considering our study of vehicle localization, the sampling rate of 20 

Hz is sufficient for capturing the MAD signals.
Fig. 7(a), (b) illustrates the distribution of the sensors: the distance 

between two sensors is around 20 m. The experimental site is located at 
a park in Qingdao, China, where the environmental magnetic field noise 
is about 1 nT. As shown in Fig. 7(c), (d), the sensors of No. 1~9 were 
classified into two types of placements: one is rectangular array, and the 
other is random array. At the same time, the No. 10 sensor was placed 
near the array as a reference point to reject the effect of geomagnetic 
fluctuations during the detection. The number of alarm sensors N was 
selected as 4 and the detection threshold is 10 nT.

Fig. 8(a) shows a section of original measured data obtained from the 
TMR sensor: it can be found that there are different degrees of electro
magnetic interference (EMI) for all three axes of sensor which is mainly 
caused by wireless transmission module. In detail, this EMI noise shows 
obvious periodicity in time domain, which is consistent with the trans
mission period of wireless digital transmission, and the frequency 
partially overlaps with the signal frequency. Therefore, wave packet 
decomposition with high time–frequency resolution is selected to 
eliminate EMI in time domain. Due to the strict requirements of the 
localization algorithm on the phase characteristics of the signal, the “ 
sym” wavelet with approximate symmetry is selected here [48,49]. At 
the same time, in order to ensure computational efficiency, the “ sym4” 
wavelet with a support length of 8 is selected to decompose the signal 
[50]. The layers with entropy values larger than the threshold are 
rounded off and the signal is reconstructed. The filtered result is shown 
in Fig. 8(b); it can be seen the signal can effectively filter out the EMI 
caused by wireless digital transmission and ensure the strict phase 
characteristic.

The travelling trajectory of the target vehicle in the sensor array was 
localized by using the Real-Time Kinematic (RTK) system, which has a 
localization error of less than 10 cm. So, this measured position is used 
for the real path of the vehicle, vehicles moved for 19 s in the regular 
array and 23 s in the irregular array. The results of localization trajec
tories are shown in Fig. 9(a), (b): The red curves indicate the trajectories 
localized by the GS-PSO algorithm and tracked by the ST-IMM filter, the 
green ones indicate the results obtained by the TFM algorithm, and the 
purple ones indicate the results obtained by the Centroid Localization 
algorithm. According to the trajectory, it can be found intuitively that 
the Centroid Localization algorithm has the lowest positioning accuracy, 

Fig. 5. (a) Localization and tracking trajectories of the target in a monitoring 
area of 120 m*120 m. (b) Localization error on the target and tracking error 
after filtering with two filters. (c)(d) Velocity errors obtained from KF and 
ST-IMM.
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which is due to the fact that the Centroid Localization algorithm only 
starts with the relationship between the signal strength and the distance 
to the target and directly ignores information such as the magnetic 
moment of the vehicle.

The TFM only has good positioning effect in straight line movement, 
and when the vehicle has a fast steering, it will have a large error. The 
positioning errors of these three algorithms are counted separately, and 
the results are shown in Table 1 and Table 2. But it should be noted that 
there is a trajectory interruption for both regular placement and irreg
ular placement conditions. In Fig. 9(a), for example, at the coordinate of 
X = 40 m, Y = 55 m, it almost loses the localization points. This issue is 
mainly due to the target located at the boundary of the sensor array. In 
fact, expanding the number of sensor nodes can effectively reduce this 
effect. Additionally, this issue can be also addressed by incorporating 
advanced signal processing and detection methods in future work, 
which can enhance detection capabilities under low signal-to-noise ratio 
conditions.

The travelling trajectory of the target vehicle in the sensor array was 
localized by using the Real-Time Kinematic (RTK) system, which has a 
localization error of less than 10 cm. So, this measured position is used 
for the real path of the vehicle, vehicles moved for 19 s in the regular 

array and 23 s in the irregular array. The results of localization trajec
tories are shown in Fig. 9(a), (b): The red curves indicate the trajectories 
localized by the GS-PSO algorithm and tracked by the ST-IMM filter, the 
green ones indicate the results obtained by the TFM algorithm, and the 
purple ones indicate the results obtained by the Centroid Localization 
algorithm. According to the trajectory, it can be found intuitively that 
the Centroid Localization algorithm has the lowest positioning accuracy, 
which is due to the fact that the Centroid Localization algorithm only 
starts with the relationship between the signal strength and the distance 
to the target and directly ignores information such as the magnetic 
moment of the vehicle. The TFM only has good positioning effect in 
straight line movement, and when the vehicle has a fast steering, it will 
have a large error. The positioning errors of these three algorithms are 
counted separately, and the results are shown in Table 1 and Table 2. But 
it should be noted that there is a trajectory interruption for both regular 
placement and irregular placement conditions.

In Fig. 9(a), for example, at the coordinate of X = 40 m, Y = 55 m, it 
almost loses the localization points. This issue is mainly due to the target 
located at the boundary of the sensor array. This is primarily because 
when the target approaches the array boundary, the number of sensors 
receiving signals with intensity exceeding the threshold fails to meet the 

Fig. 6. The blue distribution chart represents the magnetic moment error, and the red distribution chart represents the positioning point error. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Picture of the experimental layout consisting of 9 sensors and one sensor as compensation for a 2 m (width)× 5.5 m (length) pickup truck moving in a 40 
m × 40 m area; (b) Each sensor node is composed of three orthogonal TMR; (c) Schematic diagram of the sensing network distributed in a rectangular type according 
to a spacing of 20 m; and (d) Random distribution of the sensing network in a 40 m × 40 m area.
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required count N. To mitigate this issue, expanding the array scale to 
enhance coverage serves as an effective measure. Additionally, adopting 
advanced signal processing and detection methods to replace threshold- 
based detection can improve detection capabilities under low signal-to- 
noise ratio (SNR) conditions, thereby addressing the trajectory loss 
problem at the array boundary.

Meanwhile, according to the running time of the vehicle and the 
positioning time of the algorithm, it is shown that our proposed GS-PSO- 
ST-IMM positioning and tracking algorithm process can locate the 
vehicle in real time, with a very small latency.

5. Conclusion

In this study, the GS-PSO-ST-IMM localization and tracking algo
rithm is proposed to solve the localization problem of nonlinear moving 
vehicles. Specifically, we introduce the geomagnetic background field to 
solve the target position and magnetic moment through a step-by-step 

Fig. 8. (a) Raw data sent from the sensor to the computer. (b) Data after noise reduction processing.

Fig. 9. Target tracking trajectories and error statistics under two distributions of sensor networks: (a) Rectangular distribution of sensor networks; (b) Random 
distribution layout of the sensing network.

Table 1 
Comparison of localization results of the three algorithms under regular arrays.

Search method M (%) Time consumes(s)

Centroid Localization Algorithm [51] 27.38 20.32
TFM [32] 11.03 23.10
GS-PSO-ST-IMM* 6.30 20.4

Table 2 
Comparison of localization results of the three algorithms under unregular 
arrays.

Search method M (%) Time consumes(s)

Centroid Localization Algorithm [51] 33.74 24.82
TFM [32] 11.86 26.30
GS-PSO-ST-IMM* 8.43 25.08
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strategy of gradually refining the model. Furthermore, we improve the 
tracking effect of the vehicle under nonlinear motion by dynamically 
fusing multiple linear models and adjusting the filter gain factor ac
cording to the idea of strong tracking based on interactive multi-model 
filtering. According to the simulation and experimental results, our 
proposed localization algorithm has been demonstrated to improve the 
localization accuracy for the nonlinear moving target significantly 
compared with the traditional method. Moreover, the average posi
tioning time is only about 2 s behind the real vehicle motion, which 
proves that our algorithm can also guarantee real-time performance.
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