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ABSTRACT

This study proposes a novel Grid Search-Particle Swarm Optimization-Strong Tracking Interacting Multiple
Model (GS-PSO-ST-IMM) algorithm to address the challenges of tracking vehicles with nonlinear trajectories
using distributed magnetic sensor networks. Traditional methods suffer from limited accuracy due to insufficient
magnetic moment resolution and motion model mismatch. The key contributions include: (1) integrating
geomagnetic background field priors into a hierarchical localization model, refining vehicle position and mag-
netic moment estimation through grid search and PSO optimization; (2) enhancing tracking robustness by
dynamically fusing multiple motion models by Interacting Multiple Model filtering and adjusting filter gains
using strong tracking principles to mitigate model mismatch. Simulations demonstrate a 38.7 % reduction in
velocity error compared to the Kalman filter, with average localization errors of 0.99 m. Field experiments
validate real-time performance, achieving 6.3 % and 8.43 % error ratios under regular and irregular sensor
layouts, outperforming centroid and Total Field Matching methods. The framework significantly improves ac-
curacy for complex maneuvers (e.g., sharp steering) while maintaining computational efficiency, offering
practical value for security and traffic monitoring applications.

1. Introduction

With the development of Internet of Things (IoT) technology, it has
been creating various sensing and monitoring networks based on lots of
distributed sensors [1,2]. Particularly, such technique is showing great
advantage for the applications of the port security and border moni-
toring, which require a large volume of sensors [3,4]. As one of
important passive detection technologies, magnetic anomaly detection
(MAD) has been applied for unexploded ordnance detection, target
location, and other areas due to its cross-media detection capability and
strong environmental adaptability [5-7]. Previous studies have shown
that continuous monitoring of targets, such as ship and vehicle, can be
effectively realized by deploying magnetic sensor networks in shallow
seabed or open areas, which show great value of enhancing port security
and homeland security [8-11].

In fact, IoT technology offers the military an opportunity to monitor
vehicle within a specific area through battlefield coverage by thousands

of compact magnetic sensors [12]. These remote monitoring sensors can
form an unattended ground sensor network to generate magnetic
anomaly signals induced by intruding targets, meanwhile, the array
configuration is helpful to reduce the false alarm rate. Similarly, in
shallow sea monitoring, hundreds of underwater magnetic or acoustic
sensors can be deployed to monitor vessels in areas of interest [13,14].
Therefore, it has been drawn lots of interests in the study of a target
localization and monitoring by using magnetic sensors [15,16].
Regarding to the issue of vehicle localization by the magnetic sen-
sors, the problem can be described by a nine-dimensional parametric
nonlinear optimization problem, which contains the vectors of position,
magnetic moment and velocity [17-19]. Generally, current in-
vestigations can be divided into two technical routines: one of them is to
localize the target based on magnetic vector information. Unfortunately,
this type of method is affected greatly by the attitude of vector sensors,
as well as errors in the axial direction and observation direction of
magnetic sensors. To address these adverse factors, the single-point

* Corresponding author at: Qingdao Graduate School, Harbin Engineering University, Qingdao 266000, China.

E-mail address: shenying@hrbeu.edu.cn (Y. Shen).

https://doi.org/10.1016/j.measurement.2025.120265

Received 25 April 2025; Received in revised form 21 December 2025; Accepted 29 December 2025

Available online 30 December 2025
0263-2241/© 2025 Published by Elsevier Ltd.


https://orcid.org/0009-0000-9371-5432
https://orcid.org/0009-0000-9371-5432
https://orcid.org/0000-0003-4501-8477
https://orcid.org/0000-0003-4501-8477
https://orcid.org/0000-0002-6465-9029
https://orcid.org/0000-0002-6465-9029
mailto:shenying@hrbeu.edu.cn
www.sciencedirect.com/science/journal/02632241
https://www.elsevier.com/locate/measurement
https://doi.org/10.1016/j.measurement.2025.120265
https://doi.org/10.1016/j.measurement.2025.120265

C. Yang et al.

gradient methods and tensor methods have been proposed [20-22].
However, these improvements cannot eliminate the errors induced by
the intrinsic axial alignment and observation directions of magnetic
sensors. Consequently, it imposes extremely high requirements on the
layout of sensors. Therefore, vector information-based methods are not
suitable for rapidly deployed distributed sensor networks. On the other
hand, another important localization strategy is based on magnetic
scalar information. In this case, some coefficient fitting approaches, such
as the gradient descent and the inverse function methods, have been
proposed [23-25]. Nevertheless, the gradient descent method requires
reasonable initial solutions and regularly distributed arrays, otherwise,
this algorithm is non-convergence. Meanwhile, the performance of the
inverse function method is highly dependent on the fitting model, such
as the continuity of the objective function, which makes it not reliable.
To solve these problems, advanced algorithms like simulated annealing,
ant colony and particle swarm optimization have been developed
[26-28]. These algorithms are designed to predict the target position by
fitting the observed values of magnetic anomaly signals with calculated
ones. However, the simulated annealing algorithm requires extensive
experiments to select iteration parameters and initial parameters.
Although the ant colony algorithm exhibits good performance in local
optimization, it is usually intended to be stuck as the parameter space is
complicated. Thus, it requires large computational loading and a high
number of iterations, which brings in a huge challenge for real-time
performance. Meanwhile particle swarm optimization algorithm has
been proved to have high accuracy and strong global optimization
ability in the field of target location [29,30]. However, there are obvious
defects in the response speed and multiplicity in the face of high-
dimensional optimization. Furthermore, these algorithms are dealing
with the issue of single-point localization. When the target undergoes
nonlinear motion, the positioning results between adjacent sensor nodes
conflict with each other, leading to a poor target tracking capability. To
overcome the limitations of single-point localization, some scholars
have adopted array-based approaches, such as the centroid algorithm
and the total field matching (TFM) algorithm [31-33]. Most of these
methods combine magnetic anomaly signals with geometric weighting
methods based on array configurations and estimate motion parameters
through spatiotemporal differences in multi-sensor signals. In order to
reduce the complexity of computation, these methods normally neglect
the dynamic changes of the target's magnetic moment, which limit the
prediction accuracy. To address these shortcomings, alternative
methods such as least squares and Bayesian filtering have been intro-
duced [34-37]. However, such methods exhibit significant limitations as
tracking vehicles with nonlinear motion, such as sharp deceleration,
accelerations and lane changes. This unacceptable performance is
mainly caused by two unresolved challenges in this research area:

1) Insufficient resolution of magnetic moment parameters. It has
been demonstrated that the absence of directional information in the
scalar information results in the direct solution encountering multidi-
mensional nonlinear optimization. The conventional algorithms usually
take the magnetic moment model as a constant value to reduce the
complexity of the solution. However, it should be noted that the posi-
tioning accuracy is limited, particularly in the case of localizing the
vehicle with nonlinear motion. In this case, the variation of the target’s
magnetic moment cannot be consistent.

2) Mismatch of the motion models. In order to obtain the parameter
of vehicle velocity, an assumption regarding its motion model must be
made. Most studies assume that vehicles follow a straight line or make
prior decisions based on the direction of the road [38-40]. However, the
targets typically exhibit intricate motion patterns, such as lane changing
or steering. Consequently, the mismatch between the model assump-
tions and the actual motions causes the relatively big error as estimating
the velocity of target, which directly affects the localization accuracy as
well.

Therefore, in order to promote the application of large-scale multi-
target monitoring and localization, it is highly desired to derive an
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advanced algorithm with the great capability of real-time localizing and
tracking nonlinearly moving vehicle. In this paper, we propose a Grid
Search-Particle Swarm Optimization-Strong Tracking Multi-Model
filtering (GS-PSO-ST-IMM) localization and tracking algorithm frame-
work, which is demonstrated to have good performance in this case. The
contributions are mainly in the following two aspects: firstly, we
introduce the geomagnetic background field into the localization model,
which can improve the localization accuracy by considering the effect of
background field. Secondly, we track the vehicle by an interactive multi-
model filtering tracking framework based on the strong tracking (ST-
IMM) filtering. With the help of fusing different motion models, the
degradation of localization accuracy caused by the model mismatch can
be reduced. More importantly, both simulation and experimental results
have shown that our proposed algorithm exhibits higher localization
accuracy for nonlinear moving vehicle compared to previous works.
Such excellent performance holds it promising for potential applications
of developing real-time monitoring system for homeland security, un-
authorized vehicle tracking in restricted areas critical and so on.

2. Localization algorithm

The signal processing flowchart of the proposed GS-PSO-ST-IMM
localization algorithm is shown in Fig. 1:

Step 1: Identify the abnormal area. According to the amplitudes of
magnetic signals captured by the sensors, the area where the target
located can be is quickly determined. This area is defined as an abnormal
region.

Step 2: (1) Initial localization. The abnormal area obtained from
previous step is divided into multiple anchor points, and then an initial
solution for the target position and magnitude of magnetic moment can
be achieved by searching the one with the smallest error value among
the anchor points based the simplified grid search method. Unlike pre-
vious works [32-34], it only obtains a rough range for the target position
and magnetic moment magnitude in this process. (2) Precise localiza-
tion. Based on initial solution, the local geomagnetic field is introduced
as reference information. Subsequently, a particle swarm optimization
algorithm is employed to determine the target position and the magnetic
moment precisely. Thus, much more accurate solution can be solved
through this new Grid Search-Particle Swarm Optimization (GS- PSO)
algorithm.

Step 3: Tracking. In order to predict the nonlinear trajectory of a
target, an interactive multi-model filtering tracking framework based on
the strong tracking (ST-IMM) concept is proposed. To overcome the
limitation of previous work [32], this new method integrates the Kalman
filtering with multi-modal filtering and the strong tracking. Benefitting
from the dynamic fusion of multiple linear models and adjustment of
filter gain, such advanced algorithm is able to track nonlinear targets
with sudden changes in motion state. So that, the localization results
obtained from Step 2 are used as input to derive the target trajectory
through this approach.

2.1. Identify anomaly region

Fig. 2(a) shows the detection layout of a ferromagnetic target moving
in a sensor network consisting of multiple groups of sensor nodes. The
whole area is divided into different monitoring regions by sensors with
different relative positions. We assume that both the target and the
sensors are in the same plane, so the position of all the sensors can be
uniquely represented by the coordinate system as P;(x;,y;, ), and the
position of the target can be denoted as Py, (Xm,Ym,%m)-

As a vehicle intrudes into the area covered by the sensor network, it
can be a magnetic dipole when the vehicle is far away from the sensor
nodes. Therefore, the magnetic anomaly signal B induce by vehicle can
be expressed as:
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where g is the vacuum permeability, which is equal to 47 x 10~7H/m. r
denotes the relative position vector of the sensor and the magnetic
dipole, and m denotes the magnetic moment of the vehicle.

According to the configuration of a magnetic dipole model shown in
Fig. 2(b), the Eq. (1) can be rewritten as:

|B| = LS Holm| |3rocosd — my| 2
7| 4z
where mg denotes a unit vector of the magnetic moment of the magnetic
dipole, ry denotes a unit vector of the relative position of the sensor and
the magnetic dipole, and 6 denotes the angle between m and r.
Thus, the total field signal induced by the magnetic dipole can be
expressed as:

Holm| 1
Bl ==, el &)
where p = [3rocosd — my)|.

The value of p depends on the relative position between the vehicle
and the sensor and the direction of the magnetic moment. That is, it is
determined by the position of the vehicle and the direction of the
magnetic moment, but it cannot be obtained through priori knowledge.
However, according to 4 satisfies 0° < 6 < 360, it is derived that p can
be determined to be from 1 to 2.

According to Eq. (3), the magnitude of the signal received by sensors
is mainly determined by the distance between the magnetic dipole and
sensors. Therefore, the position of the dipole is locked in the region
enclosed by these N sensors that receive the maximum signal magnitude.
Therefore, the position of the magnetic dipole satisfies xm € [min(xi),
max(xi)], ym € [min(y;), max(y;)], where x;, y; denote the relative co-
ordinates of the i-th node in the sensor network.

2.2. Localization

The localization issue for a magnetic target can be described as a six-
variable optimization problem involving the target position and mag-
netic moment. According to previous results [41,42] the magnetic
moment direction is significant changed as the target undergoes
nonlinear motion. Therefore, a real-time calculation of magnetic
moment is critical for positioning nonlinear moving target. To avoid
falling into local optimal solution and excessive computation time when
directly solving for target location and magnetic moment, we firstly
approximate the target position and magnetic moment magnitude by
ignoring the magnetic moment direction [32-34,43]. Subsequently,
based on this approximate solution, we redefine the search space and
incorporate magnetic moment direction information to perform precise
calculations. The directional information of the magnetic moment was
determined through stepwise positioning. This approach can achieve
higher positioning accuracy in nonlinear motion localization.

2.2.1. Initial localization
Based on Eq. (3), the magnitude of the magnetic moment of the
magnetic dipole can be expressed as:
B 3
_IBllr

0

|m| = 4 4

According to Eq. (4), the amplitude of the magnetic moment for the
target is unique. Therefore, instead of calculating the target position by
using Eq. (3), the error function (Eq. (5)) is established to describe the
mismatch between the true magnetic moment value of the magnetic
dipole and the estimated value by using our proposed algorithm. So, the
problem of localization is transformed into finding the minimum value
of the error function.

N 1 2
e(am) = |3 <|mi| Nznm) ®)
1 i1

[

where |m;| denotes the amplitude of the vehicle magnetic moment ob-
tained by the magnetic signal from the i-th sensor among the N sensors in
this anomaly region.

In detail, according to the definition of error function, it can be
noticed that the smaller the value of the error function, the closer esti-
mated position to the real vehicle position. Therefore, the grid co-
ordinates corresponding to the value of min(e(Am)) is regarded as the
primary location of the vehicle. It should be noted that the p value in-
volves multi-dimensional parameter coupling. It mainly includes the
relative positions of the sensor and the vehicle, the geomagnetic field
environment characteristics, the 3D configuration of the vehicle and the
platform attitude angle, and other influencing factors. If solved directly
it will face high-dimensional nonlinear optimisation. Most of the pre-
vious research simplify the positioning model by simplifying the influ-
ence of p according to the small range variation of p € [1,2]. such as the
centre point positioning algorithm, the Total Field Matching (TFM)
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algorithm [32,33,44]. In order to avoid high-dimensional nonlinear
optimisation, we take p = 1.4 to simplify the model to obtain the vehicle
position and magnetic moment initial solutions according to previous
results. However, one should be noted that this process only obtains an
initial solution for the target position and magnetic moment, rather than
directly deriving the localization of target.

As shown in Fig. 3(a), for the characteristics of the magnetic anomaly
region, we adopt a grid deployment strategy to construct an array of
anchor points. By constructing the error evaluation function based on
Eq. (5), the magnetic moment matching degree is calculated for each
anchor point, and the spatial coordinates corresponding to the minimum
error value are finally selected as the initial localization solution of the
target vehicle, and the magnetic moment inversion is completed
simultaneously. It should be particularly pointed out that the mathe-
matical properties of Egs. (4)-(5) indicate that this error function pre-
sents significant spatial heterogeneity characteristics in the solution
space. In order to optimize the allocation of computational resources,
this scheme designs a multilevel grid refinement strategy: as shown in
Fig. 3(b), by constructing a progressive anchor distribution architecture
from sparse to dense, and adopting an iterative mechanism of step-by-
step convergence, we can effectively reduce the load of a single opera-
tion while guaranteeing the positioning accuracy, so as to achieve a
dynamic balance between computational efficiency and positioning
accuracy.

2.2.2. Precise localization

In the rough localization phase, we can obtain initial estimates of the
vehicle position and magnetic moment strength
(xpn-ma,y, Yprimary | Mprimary | ) However, due to the parameter simplifica-
tion strategy, the process inevitably introduces systematic errors. In
order to accurately solve the magnetic moment direction, we introduce a
system of direction parameters based on the initial solution: let a be the
angle between the magnetic moment vector and the vertical direction
(0" < @ < 180"), and j3 be the angle between the horizontal projection of
the magnetic moment and the due-east direction (0" < < 360°), and
thus construct a complete representation of the magnetic moment
vector:

Abnormal
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Bigast = é:r—OrS [3(xpso — 1)Mgase + 3XpsoYpsoMuorts + 3XpsoZpsoMericat]  (6)
Binorth = 4‘:[—0'3 [3XpsoYpsoMeas: + 3(¥eso — 1) Morth + 3YpsoZpsoMversical

(7)
Biverticat = % [3xPSOZPSOmEa.st + 3YpsoZpsoMorth + 3(2pso — 1)mVem'cal]

(8)

where (xpso,¥rso, |mpso|) denotes the PSO algorithm particle con-
structed based on the results obtained from the coarse localization.
MEast,MNorth,Mverticat d€NOtes the component of the magnetic moment in
the east, north and vertical directions which can be obtained from the
orthogonal decomposition of |mpso|, @ and f. Bigast,BinorthsBivertical T€PTe-
sents magnetic field generated by the vehicle in the east direction, the
north direction and the vertical direction.

According to working principle, the magnetic sensor measures the
projected component of the magnetic field along the geomagnetic
background direction. Thus, the magnetic field signals received by
different sensors inside the anomaly region are not only various in in-
tensity, but also in their projection directions relative to the geomag-
netic field. Considering that the geomagnetic background strength By
and its direction parameters (magnetic inclination ¢, magnetic decli-
nation y) can be accurately obtained by a regional geomagnetic model,
they are taken as a priori constraints in this study. The strength and
direction characteristics of the observed signals are jointly determined
by three sets of parameters: 1) the position coordinates (xm, ym) and the
magnetic moment modulus m of the target vehicle. 2) the magnetic
moment direction parameters (a, ). 3) the geomagnetic field back-
ground direction (¢, 7).

Parameter 1) can be coarsely located to obtain an estimate as an
initial solution, and parameter 3) can be directly called from the
Geographic Information System database. So, we implement the global
spatial search for parameter 2, while the neighbourhood local adjust-
ment for parameter 1. In order to achieve multi-parameter collaborative
optimisation, PSO algorithm is used to solve the problem:

As the magnetic moment and the position of the target is determined,
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the magnetic anomaly signal received by the i-th sensor can be found to
be B; according to Eq. (2), and the signal B received by the sensor can be
described as:

B = \/(BgEast + BiEast)2 + (BgNorth + BiNorth)2 + (BgVertical + BiVertical)2 (C)]

where Bggqst,BenorthsBaveriica denotes the strength of the geomagnetic
background in the due east, due north and vertical directions. These can
be calculated from magnetic declination and inclination angles.

Based on Eq. (9) it is possible to determine an error function as an
adaptation function for the PSO algorithm:

N

=" (|Bpos| — Bi])? (10)

i=1

where |B;| is the actual observed value of i-th sensor. |Bpns| denotes the
observation of i-th sensor inverted from the parameters of the current
particle by Eq. (1).

In terms of parameter optimization configurations, the spatial
boundary conditions of the parameters in the PSO algorithm involving
the vehicle position coordinates (xpso, ypso) and the magnetic moment
modulus mpgp will be systematically elaborated in the localization
simulation in Chapter 3.

By using our proposed 2-steps GS-PSO localization strategy, the
positioning accuracy of nonlinearly moving vehicles can be enhanced
greatly. Specifically, with the help of introducing the geomagnetic
background field into the positioning algorithm, the issue such as falling
into local optimal solution caused by a direct six degree-of-freedom
nonlinear optimization can be avoided effectively.

2.3. Tracking

To address the inversion problem of vehicle kinematic parameters
(vx, vy, Vz), we recursively estimate the target localization points ob-
tained from the localization algorithms through the filtering system
based on the dynamic system equations and the magnetic dipole
observation model. An in-depth analysis reveals that the traditional
Kalman filter (KF) and its extended form (EKF) can achieve motion state
tracking through a linear approach though. However, due to the
inherent defects of a single motion model, the tracking accuracy will be
degraded due to model mismatch when the vehicle has nonlinear motion
patterns such as sharp steering. To address this problem, we achieve
adaptive fusion of motion models through the IMM architecture by

X -1/k=1) X (k=1/k-1)
| |
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adopting a multi-model fusion mechanism in time-varying motion
modes. We also introduce the strong tracking idea and obtained the ST-
IMM, which improves the sensitivity of the filtering algorithm to sudden
changes in the motion state by dynamically adjusting the filtering gain
in the filtering algorithm.

As shown in Fig. 4, the ST-IMM filter is based on the IMM filter,
where a fading factor 4 is introduced for each model in IMM filter, and
the filtered model gain is increased by the fading factor when the model
does not satisfy orthogonality in order to improve model tracking. For
example, as the target undergoes a sudden change in motion state, the
filtering gain would be rapidly increased through the factor of 1, which
can enhance the tracking accuracy. The filtering process can be repre-
sented as the following steps:

(i) Initialization

Considering there are a total of r motion models with two observa-
tion time intervals of AT under different models j, the motion state of the
vehicle under kAT moments can be expressed as s;(k):

5ik) = [Xm(k) vx(k) ym(k) vy(k) ax(k) a(k)]" amn
where [Xpn(k) ym(k)], [vx(k) vy(k)], [ax(k) ay(k)] denotes the po-
sition, velocity and acceleration information of the vehicle at moment

kAT, respectively. Therefore, the measurement equation at moment kAT
can be expressed as:

Z;(k) = H;s;(k) + Nj(k) (12)
where Nj(k) denotes the total noise caused by the sensor intrinsic noise
and environmental noise; H denotes the corresponding state transfer
matrix of the vehicle at the moment kAT, which represents the rela-
tionship between the measured position and the true position. H can be
expressed as:
1 00000

H=lo o100 0 (13)

The corresponding equations of state for different motion models can
be expressed as:

si(k/k — 1) = Ajs;(k — 1) + Wj(k) (14)

where Wj(k) denotes the process noise; Aj denotes the prediction matrix
under different model j, and different motion models correspond to
different prediction matrices. For example, the prediction matrices of
constant velocity (CV) model, constant turning (CT) model and constant

X -1/k-1)

— .
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Fig. 4. ST-IMM Flowchart.
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acceleration (CA) model can be expressed as:

1 At 0 0 0 O
01 0 0 00
0 0 1 At 0 0
Av=10 0 0 1 0 0 as
0 0 0 0 00
0 0 0 0 00
[1 sin(wAt)/w 0 —(1—cos(wAt))/w 0 0
0 cos(wAt) 0 —sin(wAt) 00
A — 0 (1-cos(wAt))/w 1 sin(wAt)/w 00 16)
=10 sin(wAt) 0 cos(wAt) 00
0 0 0 0 0 0
10 0 0 0 0 0
[1 At 0 0 A®/2 O
01 0 0 At 0
_ |0 0 1 At 0 AP)2
Aa=10 0 0 1 0 At a7z
00 0 0 1 0
00O 0O 0 0O 1

These three models can describe the most common status of vehicle
motion. The prediction model can avoid the tracking inaccuracy caused
by model mismatch effectively as the fusion of three models expressed
by Egs. (15)-(17). The transfer between the models is determined by a
Markovian probability transfer matrix:

pu ... Pir

P=| .. .. .. (18)
prl prr

where p; denotes the probability of the vehicle transferred from the i-th

motion model to the j-th motion model. In this paper P takes the value:

0.025 095 0.025
0.025 0.025 0.95

0.95 0.025 0.025
P= 19

(ii) Input Interaction

The mixed estimate Sq;(k — 1/k — 1) and covariance Pyj(k — 1/k — 1)
are obtained from the state estimate sj(k —1/k —1) at the vehicle
(k—1)AT moment and the model probability uj(k — 1) for each filter,
treating the mixed estimate as the initial state of the current loop. The
expression is given below:

6= puk—1) (20)
i=1
1 r
uij(kfl/kfl)ZEZp,-ju,-(kfl) 21
T i=1
Sylk—1/k—1) = ; Xitk —1/k — Du(k—1/k—1) (22)

i=1

. itk —1/k—=1){Pi(k —1/k — 1)+

Pik—1/k-1)=Y [Sik—1/k—1) =55k -1/k—1)]e (23)
ET [sik—1/k — 1) — Sk —1/k—1)]"}
where ¢; denotes the predicted probability of model j, u;(k —1/k — 1)
denotes the mixing probability from model i to j. In order to improve the
robustness of the algorithm, we give higher probabilities to the more
general models at the initial stage, with initial probabilities of 0.7, 0.15,
and 0.15 for the CV, CT, and CA models, respectively.

(iii) Strong Tracking KF (model j)

As mentioned above, a strong tracking refers to a strategy that
directly modulates filtering gain through additional factors.

KF uses a posteriori state estimate Sq(k —1/k—1), the filter
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covariance Py(k—1/k—1), and the measurement location Z(k) at
moment k-1 as the inputs for filtering to update the prediction of the
state Sj(k/k) and the filter covariance P;j(k/k) at the moment k. The
expression is given below:

S(k/k—1) = ASy(k—1/k—1) 24
Pi(k/k —1) = AjPg(k — 1/k — 1)A] +Q; (25)
K;(k) = P;(k/k — 1)H(HP;(k/k — 1)H" +R) ' (26)
5j(k/k) = 5j(k/k — 1) + K; (k) (Z(k) — Hs;(k/k — 1)) @7
Pi(k/k) = (I - K;(k)H)P;(k/k — 1) (28)

where Kj(k) denotes the gain of the filter.
The strong tracking Kalman is based on (27) and satisfies the
orthogonal principle:

E[(s;(k) — 5(K)) (5;(k) — 5;(k))"] = min (29)

E[(Z(k+1) — H§(k+ i/k+i— 1)) (Z (k) - H5(k/k —1))'] = 0,
=1,2.
(30)
In fact, the filtering and tracking process is essential to minimize the
state residual. When both of the above indicators described by Egs. (29)
and (30) are satisfied, the output residual of the filter becomes an un-
correlated Gaussian white noise sequence. At this condition, the hybrid
motion model of the filter matches the real motion model, resulting an
optimal tracking performance. Also, introduce the decay factor 4;(k) and
rewrite (25) as:

Pi(k/k — 1) = Aj(k — 1)AjPyj(k — 1/k — 1)Af+(2j (31)

where J;(k) = diag * (A1(k), Anj(k)..., Anj(k)) , 4;(k) can be expressed as:

Ao A0 > 1
(k) = { L o<1 i=1,2...,n (32)
_ tr[Vo(k+1) —bR(k+1) — HQH"]

Ao = Mk 1)) (33)

(5:(0) = 5(0)) (5;(0) — ;(0))" k=1

Volk) = 4 rvo(k — 1) + (5(0) — 5(0)) (5;(0) = 5;(0))" .k >1

1+r 0<r<1

34)

where r denotes the forgetting factor, and b denotes the weakening
factor. Considering that the actual non-linear motion state of the vehicle
mainly includes steering, acceleration, etc., we taker =0.95 and b = 0.3
[45,46].

When the factor of Vj (k) is increased due to an abrupt change in the
vehicle's motion state the filter gain of Kj(k) is also increased accord-
ingly. So that, the tracking ability is enhanced as performing this
process.

(iv) Model probability update

The model probability uj(k) is updated by calculating the likelihood
function with the following expression:

A(k) = ;exp{ - %df(k)s;l (k)dj(k)} (35)

-A;(k)c; (36)
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where Sj(k) = HPj(k/k — 1)HT + R, d;(k) = Z(k) —Hs;(k/k — 1).

Instead, the filtering results simply combine the state estimates
S(k/k) and covariance estimates P(k/k) from the different models
weighted by the model probabilities.

r

S(k/k) = S5k /Ry (k) @7

=1

POK) = 3w (k) {Pi(k/K) + [§(K) — K(K/k) o [§(K) — (/K] "))
=1

(38)

In summary, we localize the vehicle position and magnetic moment
by GS-PSO and then track the vehicle by ST-IMM based on the GS-PSO
results.

3. Simulation

To demonstrate the proposed localization algorithm, a simulation is
performed. As shown in Fig. 5(a), 36 magnetic sensors are randomly
distributed in an area of 10000 m2. The target motion path is divided
into two stages: the first stage is accelerated linear motion with an initial
velocity of 1 m/s with acceleration of 1 m/s?, and the second one is a
constant circular motion with a radius of 30 m with an angular velocity
of (7/60) rad/s. Furthermore, the magnetic moment of the target |m| =
1000 A-m?, and the orientation of the magnetic moment is set up at an
angle of 90° to the Z-axis and 60° to the X-axis. The background mag-
netic field is 53,000 nT with a magnetic inclination of —7.3° and a
magnetic declination of 53°. A 10 % Gaussian white magnetic noise was
used in the calculations, and the detection threshold is 10nT.

The distance between the localization points and the real position of
the vehicle obtained by the above algorithm and ST-IMM filtering is
used as the error.

error;, = \/(x,,, x4 Y —y1)? + (Zm — 20)° (39)

errorr = \/ (Xn — X1)? + (m — yr)* + (2n — 21)° (40)

where Py (xg,y1,2;) denotes the target position obtained by the locali-
zation algorithm and Pr(xr,yr, 2r) denotes the target position obtained
by ST-IMM filtering. The error is calculated based on the results obtained
from localization and the results after localization filtering, respectively.

Meanwhile, the area Dy, of the average distance of each sensor from
neighbouring sensors can be obtained based on the ratio of the area
Ssensor covered by the sensor array to the number of sensors Numiensor in
the sensor array:

Ssensor
v Sm—— (41)

D. =
e NuMmensor

In this simulation, Dgy, is 16.67 m.

Therefore, to evaluate the localization error relative to the array
scale, we define a dimensionless ratio M as the ratio of the localization
error to Dy

error
Davg

M= (42)

where error is the localization error (in meters), and Dy, is the charac-
teristic length of the array. M quantifies the relative error, enabling fair
comparison across arrays of different sizes.

According to Eq. (4), the magnetic moment magnitude of the target
can be inverted by bringing in the localization results. Thus, again the
accuracy of the magnetic moment prediction can be reacted by the
parameter D,.
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Dm: ‘mestl_‘m|
m|

43)
where mcg denotes the inverted target magnetic moment magnitude and
m denotes the true magnetic moment magnitude.

To determine the search area in the PSO algorithm, we randomly
distribute four sensors in a 20 x 20 m? area targeting dipole targets of
50-500 A-m% A rough localization of this dipole target is performed
using a grid search method in the absence of noise background. The
simulation is repeated 50,000 times, and the error of each localization is
counted as well as the error of the magnitude of the backpropagated
magnetic moment. The results are shown in Fig. 6.

In the statistical results, we separately seek the results of 99 % of the
distributions in the vicinity of 0 in 50,000 sets of simulations as the
solution region of the PSO algorithm:

Xpso € [Xprimary — Distance x Dyy, Xprimary + Distance x Dy | (44)
Ypso € [ypn-ma,y — Distance X Dyy, Yprimary + Distance x ny} (45)
|mPSO‘ € Hmpnmary| X (1_DmUL)7}mprimary| X (1+DmLL)] (46)

where Distance denotes the average neighbouring sensor spacing, Dy, =
11.7 % represents the proportion of distance error, Dy, = 22.3 % and
Dmir = -29.8 % represent the upper and lower limits of magnetic
moment error.

The target tracking results are shown in Fig. 6(a) the red line in-
dicates the real moving path of the target, and the localization points
obtained by GS-PSO method are marked as green squares. Moreover, the
path obtained by traditional linear KF is indicated as blue triangles, and
the path obtained by our proposed ST-IMM filtering is marked as yellow
triangles. From this figure, it can be found that as the motion parameters
of the target are changed, the tracking error based on the normal KF
method is relatively large as expected. However, benefitting from the
ST-IMM algorithm, the tracking error can be eliminated greatly. Thus,
the predicated path is quite close to the real one.

Moreover, the errors of the target localization in this case are also
analysed by calculating the mismatched values between the estimated
positions and the real ones. As shown in Fig. 5(b), for almost all of
moving process, the tracking errors based on KF is obviously greater
than the values of the ST-IMM filtering. Especially for the time around
17 s, when the motion of the target is changed from the linear acceler-
ation to the circular speed, the estimated position by using KF is
dramatically increased to over 6 m. That is unacceptable for the tracking
in the real application. As a comparison, the ST-IMM filtering method
shows much better performance in this situation, which can keep the
error value around 2 m. Statistically, the average error of the localiza-
tion trajectory based on the total field matching search is around 1.09 m
with variance of 0.34, M is 5.76 %. After applying the KF, these values
are increased to 1.65 m and 0.72, M is 8.24 %, respectively, which
means this method brings more uncertainty. The ST-IMM filtering can
bring these numbers down to 0.99 m with variance of 0.29, M is 5.17 %.
These results have been also demonstrated that the ST-IMM filtering
works much more efficiency for tracking the target with more compli-
cated motion.

Fig. 5(c) shows the error comparison results of predicting the target
motion state using KF and ST-IMM algorithms, respectively, after
obtaining the localization coordinates based on the GS-PSO localization
algorithm The results. The error curve analysis shows that the ST-IMM
algorithm has a significant advantage over the traditional KF in terms
of trajectory tracking accuracy. Especially at the critical stage when the
target undergoes manoeuvre steering, the ST-IMM algorithm shows
stronger adaptive ability, and its dynamic error amplitude is reduced by
about 38.7 % compared with the KF. It is worth noting that the KF al-
gorithm shows an obvious hysteresis effect when the heading changes
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abruptly, and it needs 5-8 sampling cycles of convergence to reach a
stable tracking state again, whereas the ST-IMM algorithm can shorten
the convergence time to 2-3 sampling cycles through the model prob-
ability self-adaptive adjustment mechanism.

4. Experiment in field

In order to demonstrate our proposed algorithm, the vehicle locali-
zation experiment was performed in the real environment field. During
the test, ten magnetic sensor nodes were placed in this area. Each of such
nodes consist of a 3-axis Tunnelling Magnetoresistance (TMR) sensor
(TMR9082, MultiDimension Technology Co., Ltd, China). The sensi-
tivity of this sensor is 3.5 V/Oe with intrinsic magnetic noise of 250pT/
rtHz at 1 Hz. Moreover, a 50 Hz low-pass filter circuit is designed to filter
out high-frequency noise. An ADC circuit converts the magnetic signal
received by the TMR sensor into a digital signal with a sampling rate of
20 Hz. And then, the digital signals are transmitted to the host computer
for processing by wireless transmission module.

According to previous study [47], the upper limit frequency of the
target magnetic anomaly signal is related to the minimum distance
closest point of approach (CPA) between the target and the sensor, and
the velocity of target v. It can be described by the following equation:

y
f~0.85 CPA (47)
where f represents the upper limit frequency of the signal.

Considering our study of vehicle localization, the sampling rate of 20
Hz is sufficient for capturing the MAD signals.

Fig. 7(a), (b) illustrates the distribution of the sensors: the distance
between two sensors is around 20 m. The experimental site is located at
a park in Qingdao, China, where the environmental magnetic field noise
is about 1 nT. As shown in Fig. 7(c), (d), the sensors of No. 1~9 were
classified into two types of placements: one is rectangular array, and the
other is random array. At the same time, the No. 10 sensor was placed
near the array as a reference point to reject the effect of geomagnetic
fluctuations during the detection. The number of alarm sensors N was
selected as 4 and the detection threshold is 10 nT.

Fig. 8(a) shows a section of original measured data obtained from the
TMR sensor: it can be found that there are different degrees of electro-
magnetic interference (EMI) for all three axes of sensor which is mainly
caused by wireless transmission module. In detail, this EMI noise shows
obvious periodicity in time domain, which is consistent with the trans-
mission period of wireless digital transmission, and the frequency
partially overlaps with the signal frequency. Therefore, wave packet
decomposition with high time-frequency resolution is selected to
eliminate EMI in time domain. Due to the strict requirements of the
localization algorithm on the phase characteristics of the signal, the «
sym” wavelet with approximate symmetry is selected here [48,49]. At
the same time, in order to ensure computational efficiency, the “ sym4”
wavelet with a support length of 8 is selected to decompose the signal
[50]. The layers with entropy values larger than the threshold are
rounded off and the signal is reconstructed. The filtered result is shown
in Fig. 8(b); it can be seen the signal can effectively filter out the EMI
caused by wireless digital transmission and ensure the strict phase
characteristic.

The travelling trajectory of the target vehicle in the sensor array was
localized by using the Real-Time Kinematic (RTK) system, which has a
localization error of less than 10 cm. So, this measured position is used
for the real path of the vehicle, vehicles moved for 19 s in the regular
array and 23 s in the irregular array. The results of localization trajec-
tories are shown in Fig. 9(a), (b): The red curves indicate the trajectories
localized by the GS-PSO algorithm and tracked by the ST-IMM filter, the
green ones indicate the results obtained by the TFM algorithm, and the
purple ones indicate the results obtained by the Centroid Localization
algorithm. According to the trajectory, it can be found intuitively that
the Centroid Localization algorithm has the lowest positioning accuracy,
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to a spacing of 20 m; and (d) Random distribution of the sensing network in a 40 m x 40 m area.

which is due to the fact that the Centroid Localization algorithm only
starts with the relationship between the signal strength and the distance
to the target and directly ignores information such as the magnetic
moment of the vehicle.

The TFM only has good positioning effect in straight line movement,
and when the vehicle has a fast steering, it will have a large error. The
positioning errors of these three algorithms are counted separately, and
the results are shown in Table 1 and Table 2. But it should be noted that
there is a trajectory interruption for both regular placement and irreg-
ular placement conditions. In Fig. 9(a), for example, at the coordinate of
X =40 m,Y =55 m, it almost loses the localization points. This issue is
mainly due to the target located at the boundary of the sensor array. In
fact, expanding the number of sensor nodes can effectively reduce this
effect. Additionally, this issue can be also addressed by incorporating
advanced signal processing and detection methods in future work,
which can enhance detection capabilities under low signal-to-noise ratio
conditions.

The travelling trajectory of the target vehicle in the sensor array was
localized by using the Real-Time Kinematic (RTK) system, which has a
localization error of less than 10 cm. So, this measured position is used
for the real path of the vehicle, vehicles moved for 19 s in the regular

array and 23 s in the irregular array. The results of localization trajec-
tories are shown in Fig. 9(a), (b): The red curves indicate the trajectories
localized by the GS-PSO algorithm and tracked by the ST-IMM filter, the
green ones indicate the results obtained by the TFM algorithm, and the
purple ones indicate the results obtained by the Centroid Localization
algorithm. According to the trajectory, it can be found intuitively that
the Centroid Localization algorithm has the lowest positioning accuracy,
which is due to the fact that the Centroid Localization algorithm only
starts with the relationship between the signal strength and the distance
to the target and directly ignores information such as the magnetic
moment of the vehicle. The TFM only has good positioning effect in
straight line movement, and when the vehicle has a fast steering, it will
have a large error. The positioning errors of these three algorithms are
counted separately, and the results are shown in Table 1 and Table 2. But
it should be noted that there is a trajectory interruption for both regular
placement and irregular placement conditions.

In Fig. 9(a), for example, at the coordinate of X =40 m, Y =55 m, it
almost loses the localization points. This issue is mainly due to the target
located at the boundary of the sensor array. This is primarily because
when the target approaches the array boundary, the number of sensors
receiving signals with intensity exceeding the threshold fails to meet the
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required count N. To mitigate this issue, expanding the array scale to
enhance coverage serves as an effective measure. Additionally, adopting
advanced signal processing and detection methods to replace threshold-

Table 1
Comparison of localization results of the three algorithms under regular arrays.

Search method M (%) Time consumes(s) based detection can improve detection capabilities under low signal-to-
Centroid Localization Algorithm [51] 27.38 20.32 noise ratio (SNR) conditions, thereby addressing the trajectory loss
TEM [32] 11.03 23.10 problem at the array boundary.

GS-PSO-ST-IMM* 6.30 20.4

Meanwhile, according to the running time of the vehicle and the
positioning time of the algorithm, it is shown that our proposed GS-PSO-
ST-IMM positioning and tracking algorithm process can locate the

Table 2 vehicle in real time, with a very small latency.

Comparison of localization results of the three algorithms under unregular

arrays. 5. Conclusion
Search method M (%) Time consumes(s)
Centroid Localization Algorithm [51] 33.74 24.82 In this study, the GS-PSO-ST-IMM localization and tracking algo-
TFM [32] 11.86 26.30 rithm is proposed to solve the localization problem of nonlinear moving
GS-PSO-ST-IMM* 8.43 25.08 vehicles. Specifically, we introduce the geomagnetic background field to

solve the target position and magnetic moment through a step-by-step

10
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strategy of gradually refining the model. Furthermore, we improve the
tracking effect of the vehicle under nonlinear motion by dynamically
fusing multiple linear models and adjusting the filter gain factor ac-
cording to the idea of strong tracking based on interactive multi-model
filtering. According to the simulation and experimental results, our
proposed localization algorithm has been demonstrated to improve the
localization accuracy for the nonlinear moving target significantly
compared with the traditional method. Moreover, the average posi-
tioning time is only about 2 s behind the real vehicle motion, which
proves that our algorithm can also guarantee real-time performance.
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